
Machine Learning & Deep Learning
Tutorial

MSCV/ESIREM Antoine Lavault
antoine.lavault@u-bourgogne.fr

⌈ RNN ⌋
Any question or exercise marked with a "*" is typically more technical or goes further into developing

the tools and notions seen during class.

***

⌞ Problem 1 ⌝

Basic Concepts

1. Draw a diagram of an RNN.

2. Draw a diagram for an LSTM.

3. Draw a diagram for a GRU.

4. What is the concept of attention in neural networks?

5. How the concept of attention is used inside of a Transformer?

⌞ Problem 2 ⌝

Review of RNNs In the following exercise, we will use the following notation. Denote the input
sequence as xtßR

k for t ∈ {1, ..., T}, and output of the network beyt ∈ Rm for t ∈ {1, ..., T}.
In the following example, we construct a ”vanilla” many-to-many RNN consisting of a node that

updates the hidden state ht and produces an output yt at each timestep with the following equations:{
ht = tanh(Wh,hht−1 +Wx,hxt +Bh)

yt = Wh,yht +By

Where ht is the time step of a hidden state (one can think of ht−1 as the previous hidden state), W·,·
be the set of weights (for example, Wx,h represents the weight matrix that accepts an input vector and
produces a new hidden state), yt be the output at timestep t and B· the bias terms.

MSCV/ESIREM - Machine Learning & Deep Learning Tutorial - Page 1/6



1. Why are vanishing or exploding gradients an issue for RNNs?

A significant issue with the vanilla RNN is that they suffer from vanishing/exploding gradients
similar to issues with deep feedforward networks. An RNN can be unrolled into a (deep) feedfor-
ward network.

At each timestep, the hidden state ht is multiplied by W . At the last timestep, ht is multiplied
by W T (matrix power). This means that depending on the singular values of the matrix W , the
gradients of the loss with respect to W may become very large or very small as they pass back
down the unrolled network. Additionally, the tanh activation at each step can also contribute to
the vanishing gradient problem.

2. Let’s show this property in an overly basic example. Consider the following 1D RNN with no
nonlinearities, a 1D hidden state, and 1D inputs ut at each timestep. (Note: There is only a single
parameter w and no bias).

(a) What recurrent relation does ht follow?
ht = w(ut + ht−1)

(b) Draw the computational graph for 3 time steps, starting at t = 1. Assume h0 = 0 and give
the hidden state at time step 2 that we will call y.
y = h3 = w(u3 + h2) = wu3 + w(w(u2 + h1)) = wu3 + w2u2 + w3u1

(c) Using the expression for y from the previous question, compute dy/dw and dy/du1

(d) Discuss this result compared to the first question of the exercise

3. Complete the class given below:

import numpy as np
class VanillaRNN:

def __init__(self):
self.hidden_state = np.zeros((3, 3))
self.W_hh = np.random.randn(3, 3)
self.W_xh = np.random.randn(3, 3)
self.W_hy = np.random.randn(3, 3)
self.Bh = np.random.randn(3)
self.By = np.random.randn(3)

def forward(self, x):
# Processes the input at a single timestep
# and updates the hidden state
self.hidden_state = np.tanh(...)
self.output = np.dot(...) + ...
return self.output

4. How does an LSTM mitigate the gradient vanishing/explosion?

⌞ Problem 3 ⌝

MSCV/ESIREM - Machine Learning & Deep Learning Tutorial - Page 2/6



GRU A GRU has a Reset gate and an Update gate in addition to the hidden state. We will describe in
more detail what happens with the new gates in the GRU and why they are called like this.

In GRUs, the forget gate decides what information should be discarded from the previous state, and
the update gate decides how much of the new state will be a blend of the last state and the candidate
state.

To define this problem, we introduce the following quantities:

• xt, the input vector at time step t.

• ht−1, the previous hidden state.

• Wz, Uz, the weights for the update gate for input and previous hidden state respectively.

• Wr, Ur, the weights for the reset gate for input and previous hidden state, respectively.

• Wh, Uh, the weights for the candidate state for input and previous hidden state respectively.

• bz, br, and bh, the bias terms for the update gate, reset gate, and candidate state respectively.

1. Recall the equations used in the most general form of GRU.

2. If xt = [0.5,−0.1], ht−1 = [0.2, 0.4], Wz = Uz = Wr = Ur = Wh = Uh =

[
0.1 0.2
0.3 −0.5

]
, and

bz = br = b = [0.01,−0.01], calculate zt, rt, h̃t, and ht.

3. Discuss the role of the sigmoid function in the update and reset gate operations.

4. Explain how the values of zt influence the final hidden state ht.

5. What would happen to ht if zt is a vector of zeros? What if it is a vector of ones?

1.


zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

ĥt = tanh(Whxt + Uh(rt ⊙ ht−1) + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt

2. Calculations for the given values are found in the script below:

1 import numpy as np
2

3 # Given data for the exercise
4 x_t = np.array([0.5, -0.1]) # input vector
5 h_t_minus_1 = np.array([0.2, 0.4]) # previous hidden state
6 W_z = U_z = W_r = U_r = W_h = U_h = np.array([[0.1, 0.2], [0.3, -0.5]]) # weights
7 b_z = b_r = b_h = np.array([0.01, -0.01]) # biases
8

9

10 # Sigmoid function
11 def sigmoid(x):
12 return 1 / (1 + np.exp(-x))
13

14

15 # Hyperbolic tangent function
16 def tanh(x):
17 return np.tanh(x)
18

19

20 # Update gate calculation
21 z_t = sigmoid(np.dot(W_z, x_t) + np.dot(U_z, h_t_minus_1) + b_z)

MSCV/ESIREM - Machine Learning & Deep Learning Tutorial - Page 3/6



22

23 # Reset gate calculation
24 r_t = sigmoid(np.dot(W_r, x_t) + np.dot(U_r, h_t_minus_1) + b_r)
25

26 # Candidate state calculation
27 candidate_h_t = tanh(np.dot(W_h, x_t) + np.dot(U_h, (r_t * h_t_minus_1)) + b_h)
28

29 # Final hidden state calculation
30 h_t = (1 - z_t) * h_t_minus_1 + z_t * candidate_h_t
31

32 z_t, r_t, candidate_h_t, h_t

3. The sigmoid function is used in the update and reset gate operations to restrict the output between
0 and 1. This regulates the extent to which information is retained or discarded, allowing the GRU
to decide which information is relevant at each time step.

4. The values of zt influence the final hidden state ht by determining the ratio at which the previous
hidden state ht−1 is combined with the new candidate state h̃t. When elements of zt are close to
1, more of the previous hidden state is kept; when they are close to 0, more of the candidate state
forms the new hidden state.

5. If zt is a vector of zeros, the final hidden state ht would be entirely composed of the new candidate
state h̃t, effectively forgetting the previous hidden state. If zt is a vector of ones, the final hidden
state ht would be identical to the previous hidden state ht−1, completely ignoring the candidate
state. This demonstrates the gate’s role in preserving past information and incorporating new
information.

⌞ Problem 4 ⌝

Attention Mechanisms for Sequence Modelling Sequence-to-Sequence is a powerful paradigm for
formulating machine learning problems. As long as we can formulate a problem as a mapping from
a sequence of inputs to a sequence of outputs, we can use sequence-to-sequence models to solve it.
For example, in machine translation, we can formulate the problem as a mapping from a sequence of
words in one language to a sequence of words in another language. While some RNN architectures we
previously covered can maintain a memory of the previous inputs/outputs, to compute the output, the
memory states need to encompass information of many previous states, which can be difficult, especially
when performing tasks with long-term dependencies. To understand the limitations of vanilla RNN
architectures, we consider changing the case of a the sentence is given a prompt token. For example,
given a mixed case sequence like “<U> I am a student”, the model should identify this as an upper-case
task based on token <U> and convert it to “I AM A STUDENT”. Similarly, given “<L> I am a student”,
the lower-case task is to convert it to “i am a student”. We can formulate this task as a character-level
sequence-to-sequence problem, where the input sequence is the mixed case sentence, and the output
sequence is the desired case sentence. In this exercise, we use an encoder-decoder architecture to solve
the task. The encoder is a vanilla RNN that takes the input sequence as input and outputs a sequence of
hidden states. The decoder is also a vanilla RNN that inputs the last hidden state from the encoder and
outputs the desired case sentence (generally called the context vector).

1. Consider a simple encoder-decoder architecture with a single hidden layer in the encoder and
decoder. The encoder takes the input sequence and outputs a sequence of hidden states. The
decoder inputs the last hidden state from the encoder and outputs the desired case sentence.

MSCV/ESIREM - Machine Learning & Deep Learning Tutorial - Page 4/6



Figure 1: Attention Mechanism for Sequence Modelling with RNNs

(a) Make a diagram of the architecture

(b) What information must be stored in the hidden state to perform the upper-case/lower-case
task? Are there any limitations to this architecture? One major limitation of the architecture
is the encoder bottleneck-activation that is passed to the decoder. This means that the hidden
state at the last time step should contain information about the entire input sequence. This
can be difficult, especially when performing tasks with long-term dependencies (e.g., the
task-identifier token is at the beginning of the sentence).

2. Instead of storing all the information in the hidden state, we can use attention to selectively store
information. The idea of attention is to query the encoder hidden states with a query vector and
use the resulting attention weights to compute a weighted sum of the hidden states. This weighted
sum is then used as the input to the readout layer that computes the output token at each time step
of the decoder.

How does adding attention (fig. 1) allow the model to bypass the information bottleneck? In
particular, what information in the following modules would allow the model to perform the
capitalization task ?

• Encoder Weights

• Attention Scores

• Bottleneck Activations

• Decoder Weights

• The encoder weights need to learn a representation of the position of a particular token in
the input-sequence.

• The attention scores compute the similarity between the decoder "query" vector and the
hidden states of the encoder. It can perform the task as long as it scores the token at the same
index as the query vector.

• The bottleneck activation no longer needs to store information about the entire input se-
quence, since we are allowed to perform a look-up with the attention scores.

MSCV/ESIREM - Machine Learning & Deep Learning Tutorial - Page 5/6



• The decoder weights learn to count, which is used to identify which token in the output-
sequence we are decoding.

MSCV/ESIREM - Machine Learning & Deep Learning Tutorial - Page 6/6


