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⌈ Linear Classifiers and friends ⌋
Any question or exercise marked with a "*" is typically more technical or goes further into developing

the tools and notions seen during class.

⌞ Problem 1 ⌝

Basic concepts.

1. Given a vector space X , a norm on X is a real-valued function p : X → R with the following
properties, where |s| denotes the usual absolute value of a scalar s:

• Subadditivity/Triangle inequality: p(x+ y) ≤ p(x) + p(y), ∀x, y ∈ X

• Absolute homogeneity: p(sx) = |s|p(x),∀x ∈ X and all scalars s.

• Positive definiteness: ∀x ∈ Xp(x) = 0 ⇒ x = 0.

Show that the L1, L2, and infinity norms are indeed norms. For the sake of simplicity, we will
assume X to be a finite-dimensional space.

2. Why is a linear classifier generally too weak for most classification tasks?

3. Is the logistic regression a linear classifier?

⌞ Problem 2 ⌝

Gradient Descent Mechanics. Gradient descent is the primary algorithm to search optimal parame-
ters for our ML and DL models. Typically, we want to solve optimization problems stated as

min
θ∈Θ

L(fθ,D),

where L are differentiable functions. In this example, we look at a simple supervised learning problem
where given a dataset D = {(xi, yi)}N , we want to find the optimal parameters θ that minimize some
loss function. We will consider different models for learning the mapping from input to output and
examine the behavior of gradient descent for each model.
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1. The simplest parametric model entails learning a single-parameter constant function. We wish to
find

θ̂const = min
θ∈R

L(fθ,D) = min
θ∈R

1

N

N∑
i=1

(yi − θ)2

(a) What is the gradient of L w.r.t. θ? (w.r.t. means "with respect to").

(b) What is the optimal value of θ?

(c) Write the gradient descent update rule.

(d) Stochastic Gradient Descent (SGD) is an alternative optimization algorithm where instead of
using all N samples, we use a single sample per optimization step to update the model. What
is the gradient update in that case? Assuming we sample uniformly, what is the contribution
of each data point to the full gradient update (do the sum of the updates)?
Note: this 1-sample-only rule only simplifies the calculations. In general, the SGD is used
on batches of n samples.

2. Instead of constant functions, we now consider a single-parameter linear model ŷ(xi) = θxi,
where we search for θ such that:

θ̂ = min
θ∈R

L(fθ,D) = min
θ∈R

1

N

N∑
i=1

(yi − θxi)
2

(a) What is the gradient of L w.r.t. θ?

(b) What is the optimal value of θ?

(c) Write the gradient descent update rule.

(d) Do all points get the same "weight" in the update? Why or why not?

⌞ Problem 3 ⌝

Why choosing a learning rate is a pain in the GPU. To understand the role of the learning rate, it is
useful to understand it in the context of the simplest possible problem first. Suppose we want to solve
the σw = y scalar equation where σ > 0. We proceed with an initial condition w0 = 0 by using gradient
descent to minimize a squared loss error.

1. Write the loss function and its derivative with respect to w.

2. Write the gradient descent update with a learning rate of η for this optimization problem. Present
the result under the form f(η, σ)wt + g(σ, η, y).

3. Show that st = wt − y/σ is a geometric progression. Deduce an expression for wt. For what
learning rate values η > 0 is the recurrence stable?

4. The previous question gives us an upper bound for the learning rate η that depends on σ beyond
which we cannot safely go. If η is below that upper bound, how fast does wt converge to its final
solution w∗ = y/σ, i.e., if we wanted to get within a factor (1 − ε) of w∗, how many iterations t
would we need?
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⌞ Problem 4 ⌝

Information Theory and Classification (*) This exercise shows how it is possible to interpret the
logistic regression as something other than likelihood.

Some Results on Shannon Entropy. Shannon entropy is a mathematical function developed by
Claude Shannon. It measures the amount of information a given source contains or delivers. This
source can take different forms, such as a text written in a specific language, an electrical signal, or even
a computer file (a collection of bytes). Shannon entropy provides an intuitive measure of the uncertainty
or unpredictability associated with a source of information. It quantifies the complexity and information
richness of a data set. The higher the entropy, the more unpredictable and novel the information source.

For a source, which is a discrete random variable X comprising n symbols (x1, · · · , xn), each symbol
xi having a probability Pi of appearing, the entropy H of the source X is defined as :

Hb(X) = −E[logb P (X)] = −
n∑

i=1

Pi logb Pi. (1)

for a logarithm in base b > 1. In the following, the logarithm will be in base e (Napierian logarithm,
corresponding to nats) and will be denoted log.

1. Propose bounds of Pi and a condition on their sum.

2. Let L be the Lagrangian of the Shannon entropy-constrained maximization problem:

L(P1, · · · , Pn, λ) =
n∑

i=1

Pi logb Pi − λ(
∑

Pi − 1) (2)

The following questions describe the process of calculating the Lagrangian to obtain the entropy-
maximizing distribution of X .

(a) Calculate the partial derivatives of L with respect to Pi. Equating the partial derivative to 0,
derive an expression for Pi as a function of λ.

(b) Calculate the partial derivative of L with respect to λ and set the result to 0.

(c) Using the results of the previous questions and remembering that solving the Lagrangian is
like solving a constrained optimization problem, what is the distribution X̂ that maximizes
entropy?

(d) Interpret the result.

Entropy and Logistic Regression. Remember that in the case of logistic regression, the explained
variable Y is a binary variable, which can represent a qualitative property. It can only take the values 0
or 1. The explanatory variables X1, · · · , Xp are real, and are grouped as X = (X1, · · · , Xp).

It is assumed that Y ∼ Bernoulli(p(Xβ)) with β the parameters of the regression with p(z) = 1
1+e−z .

1. Show that log p(z)
1−p(z)

= z.
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The output of the logistic regression model can be interpreted as a probability that the input belongs
to one class or as a probability that it belongs to the other class in a binary classification problem. We
denote this probability as follows:

P (Y = 1|z) = p(z)

1. What is the probability P (Y = 0|z) for an observation z as a function of p?

2. The likelihood for an observation (x, y) is given by the probability P (y|x, β). What are the values
taken by P (y|x, β) depending on the value of y as a function of p?

Maximum likelihood for a parametric family θ is the estimator used in logistic regression and is
generally given by :

argmax
θ

Ln(θ) = Ln(θ,y) = fn(y, θ) , (3)

with

fn(y, θ) =
n∏

k=1

f observation
k (yk, θ) .

(a) Please define the likelihood for all obervations X .

(b) The optimization of a product is generally difficult. Propose a transformation to facilitate
the maximum likelihood optimization. Justify.

3. Show that the result obtained in the previous question can be rewritten as :

H(p, q) = −
∑
x

p(x) log q(x). (4)

with p and q to define.

4. Noting the similarity with equation 1, what interpretation could be given to the quantity H(·, ·)?
Infer the link between this quantity and logistic regression in terms of information.

Note: H(·, ·) is called cross-entropy.

⌞ Problem 5 ⌝

Entropy, Cross-Entropy, Kullback-Leibler (KL)-divergence. Entropy is a fundamental concept in
information theory and statistics, representing the measure of uncertainty or disorder in a system. It
quantifies the unpredictability of outcomes in a given probability distribution. Higher entropy signifies
greater randomness and less predictability, while lower entropy indicates more order and predictability.
It is noted H and is given by:

H(Y ) = EY [− log p(Y = k)] = −
∑
k

[p(Y = k) log p(Y = k)]

On the other hand, cross-entropy is a concept closely related to entropy, often used in machine learn-
ing and statistics. It measures the dissimilarity between two probability distributions, typically predicted
and true data distributions. Cross-entropy is a loss function in various machine learning tasks, such as
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classification, to guide model training by penalizing predictions that diverge from the true distribution.
The cross-entropy is given by:

H(p, q) = −
∑
x

[p(x) log q(x)].

Kullback-Leibler (KL) divergence is a mathematical measure of the difference between two probabil-
ity distributions. Specifically, it quantifies how one distribution diverges from another. KL divergence
is asymmetric and can be considered a way to measure the inefficiency of using one distribution to
approximate another:

DKL(p ∥ q) =
∑
x

p(x)log[p(x)/q(x)]

Finally, a similar measure to the KL-Divergence is the Jensen-Shannon divergence, which is given
by:

JSD(P ∥ Q) =
1

2
DKL(P ∥ M) +

1

2
DKL(Q ∥ M),

where M = 1
2
(P +Q) is a mixture distribution of P and Q.

1. Let’s define two probability distributions given by p(x), equals to 1 or -1 with probability 0.5, and
q(x) equals 1 with probability 0.1 and -1 with probability 0.9.

Show the KL-divergence is not symmetric. What about the Jensen-Shannon divergence?

2. Show that the Kullback-Leibler divergence is non-negative and that it is equal to 0 when p = q.
Is the Jensen-Shannon divergence non-negative as well?

3. Show that DKL(p ∥ q) = H(p, q) − H(p). Deduce another expression of the JS divergence,
function of p, q, and M , the mixture distribution.

4. Show that E(log 2
1+ex

) ≤ log 2
1+eE(x) .

Hint: φ(E[X]) ≤ E[φ(X)]. when φ is convex. And f(x) = log(1 + ex) is convex.

5. Show that DKL(p, q) ≤
∑

p2/q − 1

6. Show the Jensen-Shannon divergence is bounded by 1.
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