

MSCV/ESIREM

Real-Time Imaging and Control

Practice

Antoine Lavault antoine.lavault@u-bourgogne.fr

Basics 1 - Boolean Logic

 $_$ Problem 1 \neg

Remark 1. Reminder on hexadecimal and two's complement:

- A 4-bit word can be converted to hexadecimal easily.
- Two's complement on n bits: if m < 0 and |m| can be expressed on n 1 bits, m can be encoded as the unsigned integer $2^n m$. This is useful to get the negative of a known positive number m
- When dealing with negative binary numbers encoded in two's complement, we can interpret it as a sign-bit concatenated to a (n − 1) bit word representing 2^{n−1} − |m^{*}| where m^{*} is the number |m| with the MSB removed. Ex : 1000 = −2^{4−1} + 0b000 = −8 + 0; 1010 = −2^{4−1} + 0b010 = −6
- 1. Give decimal values of those unsigned integers: 1001 1011, 0011 1100, and 0101 0101.
- 2. Same question but with signed integers in two's complement.
- 3. Give the binary values of the decimal -100, 83, and -29 (in two's complement).

$_$ Problem 2 \neg

This exercise will familiarize you with handling IEEE 754 floating point numbers. This exercise will assume a single precision float (i.e., 32-bit long).

- 1. Write the value of the lowest normal number (in absolute value).
- 2. Write the value of the lowest denormal (or subnormal) number (in absolute value).
- 3. Write the value of the highest normal number (in absolute value).

- 4. Given the bit string 0x40500000, what is the encoded float value and its decimal value?
- 5. Given the bit string 0x80600000, what is the encoded float value and its decimal value? How does it compare to the result of question 2?
- 6. Ariane flight V88/501: The rocket misbehaved with a too-sharp attack angle due to a conversion error from a 64-bit float (double precision) to a 16-bit integer in the inertial navigation system, causing it to explode with its payload. What kind of error happened to make such an event occur?

$_$ Problem 3 $^{\neg}$

Remark 2 (Dual form of a logic expression). We can define the dual of an expression e as the expression built with all the bits negated and sums and products inverted. Example: $x\bar{y} + \bar{x}z \rightarrow (\bar{x} + y)(x + \bar{z})$ Notably, if two expressions, e and f, are equal, their duals are also equal.

Simplify each expression with algebraic manipulation. when applicable, f(a, b, c) = a + b + c.

1. $a + 0$	15. $ab + a\overline{b}$
2. $\bar{a} \cdot 0$	16. $\bar{a} + \bar{a}b$
3. $a + \overline{a}$	17. $(d + \bar{a} + b + \bar{c})b$
4. $a + a$	18. $(a + \bar{b})(a + b)$
5. $a + ab$	19. $d + (d + da)$
6. $a + \overline{a}b$	20. $a(a+ab)$
7. $a \cdot (\bar{a} + b)$	21. $\overline{(\bar{a}+\bar{a})}$
8. $ab + \bar{a}b$	
9. $(\bar{a} + \bar{b}) \cdot (\bar{a} + b)$	22. $(a + \bar{a})$
10. $a \cdot (a + b + c + \cdots)$	23. $d + d\bar{a}bc$
11. $f(a, b, ab)$	24. $\overline{d(dabc)}$
12. $f(a, b, \overline{a}\overline{b})$	25. $ac + \bar{a}b + bc$
13. $f(a, b, \overline{ab})$	26. $(a+c)(\bar{a}+b)(c+b)$
14. $a + a\bar{a}$	27. $\bar{a} + \bar{b} + ab\bar{c}$

$_$ Problem 4 $^{\neg}$

Use De Morgan laws to simplify the following :

1.
$$\overline{(\bar{a}+c)} \cdot \overline{(b+c)}$$

2. $\overline{ab\bar{c}}$

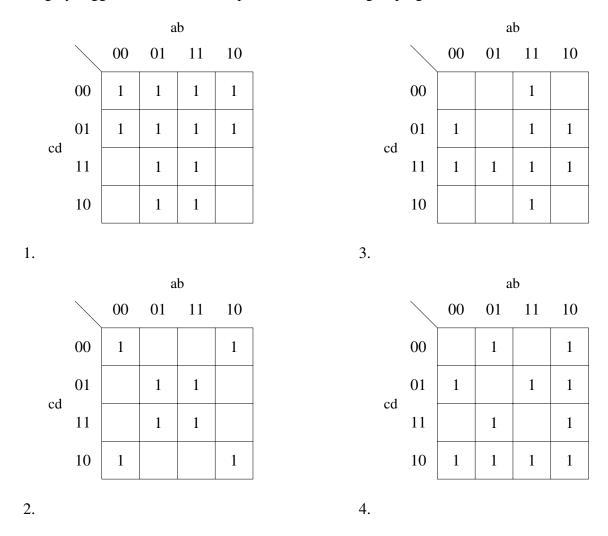
.

3. $\overline{b+\bar{c}}\cdot\overline{c+\bar{a}}\cdot\overline{\bar{a}+\bar{b}}$

$_{ m L}$ Problem 5 $^{ m 7}$

Remark 3. In a Karnaugh map, there are two possible groupings :

- One with the 1, called "Minimum Sum of Products" (MSP)
- One with the 0, called "Minimum Product of Sums"(MPS)


Note: In the slides, the notation was MSB in the rows and LSB in the columns. The other notation (with MSB and LSB transposed) will be used in the following Karnaugh maps.

c^{ab}	00	01	11	10
0	0	Х	Х	1
1	1	1	1	Х

- 1. In the Karnaugh map above, find the MSP. A careful choice for the Do Not Care ("X") values is advised.
- 2. Same question with the MPS.
- 3. Are the equations equal?

$_{ m L}$ Problem 6 $^{ m 7}$

Find the logic equations described by the Karnaugh maps. Empty cells mean 0. It is highly suggested to use colored pencils to circle the groupings.

$_{ m L}$ Problem 7 $^{ m 7}$

Simplify the following expressions with a Karnaugh map. It is suggested to start with a truth table first.

1.
$$(a + \bar{b} + \bar{c}) \cdot (\bar{c} + (a + b + d) \cdot (\bar{a} + \bar{b} + \bar{d}))$$

2. $(\bar{c} + ab)(\bar{c} + (a + \bar{d})(b + \bar{d}))(\bar{c} + (a + \bar{b})(b + \bar{d}))$
3. $\bar{w}y + w\bar{x}y + \bar{w}x\bar{z}$

$_$ Problem 8 $^{\neg}$

Four people can access a safe: Fabio, Joaquin, Raphaël, and David. Since they do not have the same role, some rules have been set :

- Fabio can open the safe if Joaquin or Raphaël are present
- The others can open the safe if two other persons are present.

What is the boolean equation for the safe? The binary variables used as inputs are "x is present."

 $_{\rm L}$ Problem 9 $^{\rm \neg}$

Remark 4. *The NAND operator is* functionally complete, *i.e.* \lor , \land , *and* \neg *can only be expressed with the NAND operator.*

- 1. Write the truth table of the NAND operator. As a reminder, a NAND $b = \overline{a \cdot b}$.
- 2. Write the operator \lor , \land and \neg in terms of NAND.
- 3. Propose a logic gate architecture implementing the OR, AND, and NOT gates in terms of NAND gates.

 $_$ Problem 10 $^{\neg}$

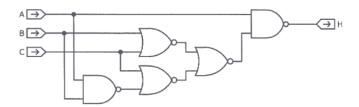


Figure 1: An arrangement of logic gates

- 1. Derive the truth table of the circuit shown in figure 1.
- Derive a simplified boolean expression from the truth table. By any means necessary.

$_$ Problem 11 \neg

A drug dealer wrote what is shown in figure 2 before getting gunned down in a shooting. The police need the help of MSCV and ESIREM students to understand what was written.

Figure 2: Unknown gibberish.

- 1. Derive the truth table of the circuit shown in figure 2
- 2. Derive a simplified boolean expression from the truth table. By any means necessary.