
Introduction to Sequential Logic (cont.)

Antoine Lavault12

1Apeira Technologies

2UMR CNRS 9912 STMS, IRCAM, Sorbonne Université

January 19, 2024



Contents

1 Memory
Shift Registers
Memory Basics
Technology-DRAM and SRAM

2 Timing in Digital Circuits
Combinational circuit timing
Sequential circuit timing
Testing for timing constraints

2 / 59



Contents

1 Memory
Shift Registers
Memory Basics
Technology-DRAM and SRAM

2 Timing in Digital Circuits

3 / 59



Outline

1 Memory
Shift Registers
Memory Basics
Technology-DRAM and SRAM

4 / 59



Shift registers

There are a few different types that are made by chaining D latches.

Serial-in to Parallel-out (SIPO)

Serial-in to Serial-out (SISO)

Parallel-in to Serial-out (PISO)

Parallel-in to Parallel-out (PIPO)

Which can be used for :

SIPO/PISO: serial communication, i.e., UART, modems...

SISO: Digital delay line, i.e., a building block of digital filters

PIPO: usage for bit-shifting operation (exponentiation by 2)

5 / 59



SIPO shift register

Figure: Caption

6 / 59



Outline

1 Memory
Shift Registers
Memory Basics
Technology-DRAM and SRAM

7 / 59



Memory, for a programmer

Virtual Memory: abstraction of the hardware!

Figure: Virtual Memory

8 / 59



Memory for programmers

When programming, a programmer sees an abstraction: virtual memory.
Which can be assumed to be "infinite."

In reality, everything is finite

In computers, the system (i.e., hardware + software) maps virtual
addresses to real addresses.

But on programmable logic, abstractions are not that common... Viva
bare metal!

9 / 59



Overview of memories

Flip-flop/registers :
very fast, parallel access
Expensive (in terms of hardware)

Static RAM:
rather fast,
Expensive (in terms of hardware), one data word at a time

Dynamic RAM:
Cheap (in terms of hardware)
Slower, refresh needed, 1 word at a time

Non-volatile storages:
Non-volatile, cheap (in terms of hardware and cost)
Much slower, longer access times

10 / 59



Memory Array

A way to store data efficiently:

A memory array to store data

Address selection logic (select a
row)

Read the row

A M-bit value can be read or
written at each unique N-bit
address

All values can be accessed, but
only M-bits at a time
Access restriction allows a more
compact organization

ion
Figure: ROM M2716, how many bits inside
?

11 / 59



Memory array cont.

In a memory array, a cell stores 1-bit
In a memory array (like the M2716) with N-address bits and M data bits:

2N rows of M columns each
Depth: number of rows/number of words
Width: number of columns/size of the words
Array size : 2N ×M

Example

For the M2716, we have 11 address bits (211 = 2048 rows) and an 8-bit
output. Which means:

The depth is 2048

The width is 8

The size is 16384 bits in total

12 / 59



Example

Address Value
00000000 EB
00000001 21
00000002 67
00000003 20
00000004 06
00000005 00
00000006 7E
00000007 BB

· · · · · ·

Table: 8-bit ROM dump (M2732)

13 / 59



Diving inside a memory array

Storage nodes in one column connected to one-bit line

Address decoder activates only ONE-word line/row

Content of one line of storage available at the output

Figure: Illustration of memory array addressing

14 / 59



Two ways to store a bit

Access transistors configured as switches connect the bit storage to the bit
line

Access controlled by the word line

Figure: Capacitor-based memory
element

Figure: Bistable-based memory
element

15 / 59



Building Larger Memories

M2716 = 16kbits of memory... So small...

Larger memories ⇒ slow
Idea: Divide the memory into smaller arrays and interconnect the arrays to
input/output buses

Large memories are hierarchical array structures
DRAM: Channel → Rank → Bank → Subarrays → Mats

16 / 59



General Principle- Interleaving (Banking)

Problem: a single monolithic large memory array takes a long time to
access and does not enable multiple accesses in parallel

Goal: Reduce the latency of memory array access and enable multiple
accesses in parallel
Divide a large array into multiple banks that can be accessed
independently (in the same cycle or in consecutive cycles)

Each bank is smaller than the entire memory storage
Accesses to different banks can be overlapped

Key Issue: How do you map data to different banks? (i.e., how do you
interleave data across banks?)

17 / 59



Outline

1 Memory
Shift Registers
Memory Basics
Technology-DRAM and SRAM

18 / 59



Dynamic random access memory

That’s a DRAM
Capacitor charge state indicates stored value

Whether the capacitor is charged or discharged indicates storage of 1 or 0
1 capacitor
1 access transistor

Capacitor leaks (there is an RC path somewhere)
a DRAM cell loses charge over time
a DRAM cell needs to be refreshed to hold its data

19 / 59



Static random access memory

That’s an SRAM
Two cross-coupled inverters store a single-bit

Feedback path enables the stored value to persist in the “cell.”
4 transistors for storage
2 transistors for access

20 / 59



Control on hardware level

Well... That’s the fun part...
Critical timing, bus clearance, asynchronous vs. synchronous...
Maybe later?

21 / 59



Contents

1 Memory

2 Timing in Digital Circuits
Combinational circuit timing
Sequential circuit timing
Testing for timing constraints

22 / 59



Outline

2 Timing in Digital Circuits
Combinational circuit timing
Sequential circuit timing
Testing for timing constraints

23 / 59



Circuit Timing

Until now, we investigated logical functionality
What about timing?

How fast is a circuit?
How can we make a circuit faster?
What happens if we run a circuit too fast?

a logically correct design can still fail because of real-world implementation
issues!

24 / 59



Combination circuit delay

Outputs do not change instantaneously with inputs
Transistors take a finite amount of time to switch
Gate outputs are delayed with respect to inputs

Figure: Caption 25 / 59



Circuit delay variation

Unfortunately, this is a crude view of circuit delays.
Delay is fundamentally caused by

q Capacitance and resistance in a circuit
Finite speed of light (not so fast on a nanosecond scale!)

Anything affecting these quantities can change delay:
Rising (i.e., 0 -> 1) vs. falling (i.e., 1 -> 0) inputs
Different inputs have different delays
Changes in the environment (e.g., temperature)

We have a range of possible delays from input to output

26 / 59



Delays from input to output

Contamination delay tcd : minimum delay
Propagation delay tpd : maximum delay

Note: cross-hatching means the value is changing. This is not a stable state.s

Figure: Effect of changing input A

27 / 59



Calculating path-length

For the following circuit:

Figure: Path length in a digital circuit

Critical/Longest path : tpd = 2tpdAND + tpdOR

Shortest path : tcd = tcdAND

28 / 59



A real NAND gate

Heavy dependence on voltage and temperature!

Figure: Datasheet for the 74HC00

29 / 59



Example - Propagation delay calculation

Two different implementations of a 4:1 multiplexer:

Figure: Two multiplexer architectures
Figure: Propagation delays for some
gates

30 / 59



Calculating path-length cont.

It’s not always easy to determine the long/short paths!
Not all input transitions affect the output
Can have multiple different paths from input to output

In reality, circuits are not all built equally
Different instances of the same gate have different delays
Wires have a nonzero delay (increasing with length, 30cm/ns)
Temperature/voltage affects circuit speeds
Not all circuit elements are affected in the same way
Can even change the critical path!

When designing, assume the “worst-case” conditions and run many
statistical simulations to balance yield/performance

31 / 59



Output glitches

Definition
Glitch: one input transition causes multiple output transitions

Figure: Example circuit

Two paths: short (2 gates) and long (3 gates)

What happens if B goes from high (1) to low (0)?

32 / 59



Output glitches

Two paths: short (2 gates) and long (3 gates)

Let’s assume A = 0, C = 1

What happens if B goes from high (1) to low (0)?

n1 output of the upper AND gate

n2 output of the lower AND gate

Figure: Glitch chronogram

33 / 59



Karnaugh maps to the rescue

Glitches are visible in K-maps :

Recall: K-maps show the results of a change in a single input by
construction (Gray Code, etc.)

A glitch occurs when moving between prime implicants (i.e., when
groupings are separated)

Figure: K-map and prime implicants

34 / 59



Fixing a glitch

Glitches are visible in K-maps :

We can fix the issue by adding the consensus term

In general, ensures no transition between different prime implicants

Figure: K-map without prime implicants transitions

35 / 59



Final words on glitches

Question: Do we always care about glitches?
Fixing glitches is undesirable

More chip area (more gates)
More power consumption (more silicon)
More design effort (more work)

The circuit is eventually guaranteed to converge to the right value
regardless of "glitchiness."

Answer: No, not always! If we only care about the long-term steady-state
output, we can safely ignore glitches

36 / 59



Outline

2 Timing in Digital Circuits
Combinational circuit timing
Sequential circuit timing
Testing for timing constraints

37 / 59



Back to the basics 2 - D flip-flop

Flip-flop samples D at the active clock edge

It outputs the sampled value to Q

It “stores” the sampled value until the next active clock edge

The D flip-flop is made from combinational elements

D, Q, and CLK all have timing requirements!

38 / 59



Timing constraints on the D flip-flop

Figure: D flip-flop timing

The input D must be stable when sampled
Setup time (tsetup): time before the clock edge where D must be stable
(i.e. not changing)
Hold time (thold): time after the clock edge where D must be stable
Aperture time (ta): time around clock edge where D must be stable
(ta = tsetup + thold)

39 / 59



Metastability 2 - in colors

If D is changing when sampled, metastability can occur

Flip-flop output is stuck somewhere between ‘1’ and ‘0’

Output eventually settles non-deterministically (i.e., probabilities and stuff)

Figure: Metastability and timing violation in an SR latch

40 / 59



D flip-flop 3 - Output timing constraints

Figure: D flip-flop output timing

Contamination delay clock-to-q (tcqq): earliest time after the clock edge
that Q starts to change (i.e., is unstable)

Propagation delay clock-to-q (tpcq): latest time after the clock edge that
Q stops changing (i.e., is stable)

41 / 59



Ensuring Correct Sequential Operation

We Need to ensure correct input timing on R2
Specifically, D2 must be stable:

at least tsetup before the clock edge
at least until thold after the clock edge

Figure: Sequential circuit

42 / 59



Sequential timing

This means there is both a minimum and maximum delay between two
flip-flops

Comb. Logic too fast → R2 thold violation
Comb. Logic too slow -> R2 tsetup violation

Figure: Sequential circuit flip-flop timing

43 / 59



Setup Time Constraint

Depends on the maximum delay from R1 to R2
the input to R2 must be stable at least tsetup before the clock edge.
Sequencing overhead: the amount of time wasted each cycle due to
sequencing element timing requirements

Tc ≥
wasted︷︸︸︷
tpcq +

useful︷︸︸︷
tpd +

wasted︷︸︸︷
tsetup (1)

Figure: Sequential circuit flip-flop timing

44 / 59



Setup time and design performance

Overall design performance is determined by the critical path tpd

Determines the minimum clock period (i.e., max operating frequency)

If the critical path is too long, the design will run slowly

if the critical path is too short, each cycle will do very little useful work,
i.e., most of the cycle will be wasted in sequencing overhead

45 / 59



Hold Time Constraint

Depends on the minimum delay from R1 to R2
The input to R2 must be stable for at least thold after the clock edge

thold < tccq + tcd (2)

tcd > thold − tccq (3)

Figure: Hold time constraint

46 / 59



Timing constraint

47 / 59



Timing constraint

48 / 59



Clock skew

To make matters worse, clocks have delays too!
The clock does not reach all parts of the chip simultaneously!
TL;DR: Reality sucks.

Definition
Clock skew: the time difference between two clock edges

Figure: Skew in a processor - Alpha 21264

49 / 59



Clock Jitter

The definition of clock skew we used considers both the spatial skew and
the jitter, i.e., the timing deviation from true periodicity.

We chose this definition to simplify the description. And consider one
variable as the worst of the worst-case scenario.

50 / 59



Revised setup timing with Clock Skew

Safe timing requires considering the worst-case skew
Clock arrives at R2 before R1
Leaves as little time as possible for the combinational logic

Tc ≥ tpcq + tpd + tsetup + tskew (4)

Figure: Caption

51 / 59



Revised hold timing with Clock Skew

Safe timing requires considering the worst-case skew
Clock arrives at R2 after R1
Increases the minimum required delay for the combinational logic

tcd ≥ −tccq + thold + tskew (5)

Figure: Caption

52 / 59



Outline

2 Timing in Digital Circuits
Combinational circuit timing
Sequential circuit timing
Testing for timing constraints

53 / 59



Does it work?

There are many levels of "it works":

You have designed a circuit! Is it functionally correct? Does the hardware
meet all the timing constraints, even if it is logically correct?

How can you test for functionality and timing?

Answer: simulation tools! For everything, more or less.

Note: aim for something higher than "It just works."

54 / 59



Testing

Testing can be the most time-consuming design stage

Functional correctness of all logic paths

Timing, power, etc. of all circuit elements

Unfortunately, low-level (e.g., circuit) simulation is much slower than high-level
(e.g., HDL, C) simulation.
Solution: splitting responsibilities.

1 Check only functionality at a high level (e.g., C, HDL)
(Relatively) fast simulation time allows high code coverage (remember, this
is very TDD-like).
Easy to write and run tests

2 Check only timing, power, etc., at low level (e.g., circuit)
No functional testing of low-level model
Instead, test functional equivalence to high-level model
Hard, but easier than testing logical functionality at this level

55 / 59



Functional Verification - Test-bench

Testbench: a module created specifically to test a design

Tested design is called the “Unit under test (UUT)” or "Device Under
Test."
A Testbench provides inputs (called test patterns) to the UUT

Hand-crafted values
Automatically generated (e.g., sequential or random values)

A testbench checks outputs of the UUT against
Hand-crafted values
A “golden design” that is known to be bug-free

56 / 59



Tiiming Verification

High-level simulation (e.g., C, VHDL)

Useful for hierarchical modeling

Insert delays in FFs, basic gates, memories, etc.

High-level design will have some notion of timing

Usually not as accurate as real circuit timing

Circuit-level timing verification

Needed to synthesize your design to actual circuits

No one general approach: it is very design flow specific. FPGA/ASIC/etc.
has special tools: Vivado/Quartus for FPGA, Cadence for ASIC/VLSI.

57 / 59



Tools

Tools exist, and they work (most of the time)

When they fail, place-and-route and manual optimization (many fun, very
lol).

58 / 59



Conclusion

Enough for today.
And it doesn’t make noises.

59 / 59


	Contents
	Memory
	Shift Registers
	Memory Basics
	Technology-DRAM and SRAM

	Timing in Digital Circuits
	Combinational circuit timing
	Sequential circuit timing
	Testing for timing constraints

	Conclusion

