
Introduction to VHDL

Antoine Lavault12

1Apeira Technologies

2UMR CNRS 9912 STMS, IRCAM, Sorbonne Université

January 19, 2024



Contents

1 VHDL Introduction

2 Programming in VHDL

3 Structural VHDL

4 Dataflow modeling

5 Sequential processes

6 Test-benches

7 Miscalenous things

2 / 55



Contents

1 VHDL Introduction

2 Programming in VHDL

3 Structural VHDL

4 Dataflow modeling

5 Sequential processes

6 Test-benches

7 Miscalenous things

3 / 55



What is VHDL

VHDL = Very-High Speed Integrated Circuit High-Level Description Language. Not Verilog HDL.

IEEE-approved standard for hardware description language

High-level description language for both simulation and synthesis

4 / 55



Some definitions

Some terms we will use during the presentation :

HDL - Hardware Description Language : a programming language used to describe a piece of
hardware (duh)

To model a piece of hardware in HDL, two ways :

Behavior modeling : A component is described by its input/output response

Structural modeling : a component is described by interconnecting different components or
primitives

5 / 55



Some more definitions

Register Transfer Level (RTL): a type of behavioural modeling for synthesis

Synthesis : transposing the HDL description into an circuit, then optimizing the circuit.

Process : a basic unit of execution in VHDL

6 / 55



Behavior modeling

Only the functionality of the circuit is described, not the structure

No specific hardware intent

Example

Think of a bit left shifter.
Input : i1, · · · in, output : o1, · · · on If activated: for ii from n to 1: shift(i) := shift(i-1)
output <=shift

7 / 55



Structural Modeling

Describe the functionality and the structure of the circuit

Call out the specific hardware

8 / 55



RTL Synthesis

TODO

9 / 55



Typical development flow

Two step process with feedback paths : synthesis and simulation.
This is basically Test Driven Development

10 / 55



Things about VHDL

Two types of constructs :
Simulation only
Synthesis and simulation

VHDL language is (mostly) not case-sensitive

A statement in VHDL ends with a ";" (semi-colon)

VHDL is white-space insensitive (i.e indentation doesn’t matter expect for the reader)

Comments are added with "–" (two dashes)

11 / 55



All in all

VHDL is a description language for complex digital circuits

It is portable to any programmable digital platform

High-level behavioural description from the specifications

12 / 55



Contents

1 VHDL Introduction

2 Programming in VHDL

3 Structural VHDL

4 Dataflow modeling

5 Sequential processes

6 Test-benches

7 Miscalenous things

13 / 55



Introductory example - AND gate

Figure: And Gate

Way. Too. Hard.
14 / 55



Inside and Out

The AND gate can be described by what is "outside" and what is "inside":
On the outside, we have:

two inputs: A and B

one output: Q

On the inside, we have some magic powder made of...
Just kidding. It’s an AND gate: Q = AB

15 / 55



VHDL, at last

-- VHDL Code for AND gate
-- Header file declaration
library IEEE;
use IEEE.std_logic_1164.all;
-- Entity declaration
entity andGate is

port(A : in STD_LOGIC; -- AND gate input
B : in STD_LOGIC; -- AND gate input
Q : out STD_LOGIC); -- AND gate output

end andGate;
-- Architecture definition
architecture andLogic of andGate is
begin

Q <= A AND B;
end andLogic;

16 / 55



Library

We have libraries in VHDL, and a library is made of packages.

In the example above, the library is IEEE, and we use the package std_logic_1164 (and
especially, we import all of its content).

To use the package, the keyword use is used, and .all shows we want to load all of the library’s
content.

Another useful library : STD_NUMERIC

17 / 55



Entity, or the outside

The syntax for the entity is shown below:

-- Entity declaration
entity entityName is

port(list of ports);
end entityName;

A mode and a type define a port. The 4 modes available are:

in: for inputs

out: for outputs

inout: for bidirectional signals

buffer: for outputs made to be fed back

As for the types, they are in general, taken from the IEEE 1164 package:

STD_LOGIC for a scalar i.e. a bit

STD_LOGIC_VECTOR for a vector

18 / 55



Architecture, or the inside

High-level portable description
Behavioral: data-flow, sequential process
Hierarchical: use of VHDL blocks and their connections

Low-level hardware-specific description
Uses proprietary hardware-specific primitives
Can be used to force to use of some part of the logic blocks on an FPGA.

The syntax for the entity is shown below:

-- Architecture declaration
architecture architectureName of entityName is

-- internal signals and constants
-- internal functions

begin
-- dataflow description
-- sequential description

end architectureName;

19 / 55



Signals

Definition
A signal is an internal physical link between two elements.
Inputs and outputs are external signals.

You should think of a signal as something you can look at with an oscilloscope.
A signal can be instantiated between the keywords Architecture and begin:

signal signalName : signalType := initialValue;

Remark
All signals are strongly typed, like in C or Java!
This means conversion operations will happen often, between SIGNED and UNSIGNED especially.

20 / 55



Types in VHDL - Scalars

bit: 0 or 1. Not really used in practice.

boolean: True or False. Reference type for conditional structures
STD_LOGIC: 9 values:

3 of them have a physical sense: 0,1 and Z
6 others are used for simulation

U for uninitialized
X for an unknown result
L for a signal that is probably 0
H for a signal that is probably 1
W for a signal non-quantifiable by 0 or 1
- for "Do Not Care"

21 / 55



Types in VHDL - Vectors

A vector can be thought of as an array of scalars.

STD_LOGIC_VECTOR: is a vector of elements of type STD_LOGIC

a: STD_LOGIC_VECTOR(3 downto 0);
b: STD_LOGIC_VECTOR(1 to 4);

For VHDL vectors, the leftmost bit is the MSB. In this example, a(3) and b(1) are the MSB and
a(0) and b(4) are the LSB.

SIGNED and UNSIGNED: behave like STD_LOGIC_VECTOR but have arithemetic operations defined in
NUMERIC_STD. Conversion functions can be found in the NUMERIC_STD package.

22 / 55



Types in VHDL - Other useful types

Mathematical types :
INTEGER: 32 bit integer. Conversion functions exist to go from INTEGER to SIGNED or UNSIGNED. It
can also be set to a certain range :

a: integer range 0 to 20; -- an integer in [0,20]
NATURAL: integers greater or equal to 0.
POSITIVE! integers greater or equal to 1
REAL: float number, IEEE-754 standard.

Characters and Strings
Very useful during simulation!!!
CHAR: a character
STRING: a string of characters.

23 / 55



Syntax example

Signals:
architecture Behavioural of syntaxExample is

signal A: STD_LOGIC;
signal B,C,D,E,F,G: STD_LOGIC;
signal carry: STD_LOGIC := '1';
signal HCounter: STD_LOGIC_VECTOR(9 downto 0);
signal VCounter: STD_LOGIC_VECTOR(9 downto 0):=(others=>'0');
signal op1, op2: STD_LOGIC_VECTOR(3 downto 0):="0000";
signal seg7: STD_LOGIC_VECTOR(1 to 7);
signal X,Y: INTEGER range 0 to 1023;

begin
...

Constants :
architecture Behavioural of syntaxExample is

signal seg7: STD_LOGIC_VECTOR(1 to 7);
constant number_1: STD_LOGIC_VECTOR(1to7):="0110000";
constant number_2: STD_LOGIC_VECTOR(1to7):="1101101";

begin
...

24 / 55



Operators in VHDL

Assignment : signal_name <= expression;

If defined for the type in use, these operators also exist:

Logic operators: and, or, not, nand, xor.

Arithmetic operators (INTEGER, SIGNED, UNSIGNED): +,-,*,/,mod (modulo), rem(remainder).

Concatenation: for STD_LOGIC,STD_LOGIC_VECTOR, CHAR and STRING.

Comparison: <,>,<=,>=,=,/=

25 / 55



Contents

1 VHDL Introduction

2 Programming in VHDL

3 Structural VHDL

4 Dataflow modeling

5 Sequential processes

6 Test-benches

7 Miscalenous things

26 / 55



Example

We want to build a component that takes two inputs, a and b, and transforms them through an AND
gate that is attached to a D flip-flop with clock-enable and asynchronous reset.
We found two interesting components in a vendor-specific package :

AND2 : two-inputs AND gate

FDCE : D flip-flop with clock-enable and asynchronous reset

Let’s import the package containing these components.

library vendor;
use vendor.specific.all;

27 / 55



Entity description

We want to describe the outside of our component as such:

a and b are inputs, c is an input

A clock input with a clock enable pin

An reset signal

A valid description in VHDL would be:

entity myComponent is
port(a: in std_logic;

b: in std_logic;
c: out std_logic;
clear: in std_logic;
clk: in std_logic;
clkEn: in std_logic);

end myComponent;

28 / 55



Internal signal

First, let’s draw the circuit. If it hasn’t been done before.
A clear place to put a signal is between the AND2 and the FDCE.

architecture behavioural of myComponent is
signal D_internal: std_logic;

29 / 55



Using the library components

To use the AND2 and FDCE components, we add the following to the architecture before begin.

architecture behavioural of myComponent is
signal D_internal: std_logic;
component AND2

port(i0: in std_logic;
i1: in std_logic;
o: out std_logic);

end component;
component FDCE

port(...)
end component;

30 / 55



Using the library components, for real.

We only described the component to our architecture, to use them effectively, we write:

begin
CMP1: AND2

port map(i0=>a;
i1=>b;
o=>D_internal);

CMP2: FDCE
port map(
C=>clk;
CE=>clkEn;
CLR=>clr;
D=>D_internal;
Q=>c);

end behavioural;

31 / 55



Contents

1 VHDL Introduction

2 Programming in VHDL

3 Structural VHDL

4 Dataflow modeling

5 Sequential processes

6 Test-benches

7 Miscalenous things

32 / 55



Concurrency

Between begin and end lies the concurrent domain.
This means operations written in this domain are executed in parallel when possible.
There are three main components in the concurrent domain :

Dataflow elements
Simple assignments
Conditional assignments : when ... else ...
Selected signal assignments : with ... select ...

Sequential processes

33 / 55



An example - AND gate

This is how you write a when ... else ...:

output <= '1' when in1='1' and in2='1'
else '0' when in1='1' and in2='0'
else '0' when in1='0' and in2='1'
else '0' when in1='0' and in2='0'
else '0';

Why else 0; at the end? Keep in mind that STD_LOGIC elements have 9 values!

34 / 55



An example - AND gate

The following is also valid:

output <= '1' when in1='1' and in2='1' else '0';

and this one as well:

signal inputs: STD_LOGIC_VECTOR(1 to 2);
begin

inputs <= in1 & in2;
output <= '1' when inputs = "11" else '0';

end architecture;

35 / 55



Going further-ALU

Let’s design an ALU with 8-bit inputs/output and two operations ADD and SUBSTRACT.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL
use IEEE.NUMERIC_STD;
entity alu is

port(ina; std_logic_vector(7 downto 0);
inb: std_logic_vector(7 downto 0);
operation: std_logic;
output: std_logic_vector(7 downto 0));

end alu;
architecture behavioural of alu is
begin

output <= STD_LOGIC_VECTOR(SIGNED(ina) + SIGNED(inb))
when operation = '0'

else STD_LOGIC_VECTOR(SIGNED(ina) - SIGNED(inb))
when operation = '1'

else "00000000";
end behavioural;

36 / 55



Selective assignement

Back to the AND gate example...

signal inputs: STD_LOGIC_VECTOR(1 to 2);
begin

inputs <= in1 & in2;
output <= '1' when inputs = "11" else '0';

end architecture;

can be transformed into:

signal inputs: STD_LOGIC_VECTOR(1 to 2);
begin

with inputs select
sortie <= '1' when '11',

'0' when others;
end architecture;

Warning

Always put when others to handle cases not described.

37 / 55



With/select statement-ALU

The ALU example with the "with/select" statement would be:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL
use IEEE.NUMERIC_STD;
entity alu is

port(ina; std_logic_vector(7 downto 0);
inb: std_logic_vector(7 downto 0);
operation: std_logic;
output: std_logic_vector(7 downto 0));

end alu;
architecture behavioural of alu is
begin

with operation select
output<=STD_LOGIC_VECTOR(SIGNED(ina) + SIGNED(inb))

when operation = '0'
STD_LOGIC_VECTOR(SIGNED(ina) - SIGNED(inb))

when operation = '1'
(others=>0) when others; -- returns an adequatly sized vector

end behavioural;
38 / 55



Testing ?

Well, we better have a way to test these snippets of code...
Later. Too late to write a lecture.

39 / 55



Contents

1 VHDL Introduction

2 Programming in VHDL

3 Structural VHDL

4 Dataflow modeling

5 Sequential processes

6 Test-benches

7 Miscalenous things

40 / 55



Sequential domain

We have seen not so long ago that the concurrent domain allows the execution of sequential processes.
In this domain, we will be able to :

use C-like structures

describe combinational logic blocks in a different way

easily handle synchronous phenomenon i.e. clock ticks.

test-benches

How to do that? Describe a process:

processName : process(sensitivity_list)

Sensitivity list: list of signals whose change of state launches the process

No sensitivity? Remove the parenthesis executed unconditionally.

Naming the process is not necessary.

41 / 55



Process syntax

processName : process(sensitivity_list)
-- declare internal variables
-- declare constants

begin
-- sequential process <-> line order matters

end processName;

42 / 55



Variables and signals

The syntax is awfully similar...
But they have totally different meanings:

A signal physically exists in the component (unless some optimization are applied at synthesis time)
A variable only exists in the process (limited scope) and is just a helper when writing the equations in
the process

And different assignation behaviors:
In a process, a signal is assigned with <=, and the assignation will be effective only when the process
is exited !
In a process, a variable is assigned with := and it’s instantaneous.

43 / 55



Programming structure

Simple assignations : <= for signals, := for variables

Conditional/selective assignments : ok in VHDL-2008. In general, not the default version of
VHDL.

Conditional structures if.then.elsif.else.endif;

44 / 55



Case statement

case var is
when val => action1; -- action if var = val
when vald to valf => action2; -- if var is between vald and valf
when val1|val2|valn => action3; -- if var is val1, val2 or valn
when others => action4; -- deal with the rest

end case;

45 / 55



Loops

For loop:

for index in start_value to end_value loop
-- index etc... are integers or subtype of integers

-- actions to do in the loop
-- etc...

end loop;

While loop:

while condition loop
-- actions to do in the loop

end loop;

Ensure the condition becomes false at some point...

46 / 55



Contents

1 VHDL Introduction

2 Programming in VHDL

3 Structural VHDL

4 Dataflow modeling

5 Sequential processes

6 Test-benches

7 Miscalenous things

47 / 55



Testing a VHDL module

Let’s take the AND gate we have seen some pages ago.
We can test it by:

Playing with a simulator

Writing tests in VHDL → exhaustive and with much more controls.

48 / 55



Test-bench as a component

A test-bench can be described as a VHDL component with:

No inputs or outputs (a sealed box)

Internal signals to test the unit under test

a declaration of the unit under test

After begin, instantiate the unit under test

Test signals (generated within the test-bench)

49 / 55



Let’s write this !

library IEEE;
use IEEE.STD_LOGIC_1164.ALL
-- No inputs or outputs
entity andGate_tb is
end andGate_tb;
architecture behavioural of andGate_tb is

-- internal signals, used as stimuli
signal A,B,Q: STD_LOGIC;
-- uut declaration
component andGate is
port(A : in STD_LOGIC;

B : in STD_LOGIC;
Q : out STD_LOGIC);

end component;
begin
---

50 / 55



Let’s write this ! Cont.

begin
--- instantiate the unit under test

uut: andGate port map(
A=>A,
B=>B,
Q=>Q);
A_stimuli: process
begin

A <= '0'; wait for 5ns;
A <= '1'; wait for 5ns;

end process A_stimuli;
B_stimuli: process
begin

B <= '0'; wait for 10ns;
B <= '1';

end process B_stimuli;
end behavioural;

51 / 55



Contents

1 VHDL Introduction

2 Programming in VHDL

3 Structural VHDL

4 Dataflow modeling

5 Sequential processes

6 Test-benches

7 Miscalenous things

52 / 55



Type conversion

A STD_LOGIC_VECTOR is a vector of STD_LOGIC. And that’s it. Is it an integer, a float, a banana?
Can I add it, can I multiply it, can I peel it?

This is why we use SIGNED and UNSIGNED. The underlying data is still STD_LOGIC but we now
know how to handle it.

Conversion function: TO_SIGNED, TO_UNSIGNED, TO_INTEGER (in NUMERIC_STD)

Operations : they are defined in NUMERIC_STD !

53 / 55



Signal Attributes

An attribute in VHDL is a meta property that’s attached to a type or object.

It’s useful to know a signal behaves → clock edges

Some are used in simulation only e.g last_event

We also define what is a transaction:

A signal is assigned a value

The assignment does not necessarily change the value.

54 / 55



Signal attributes

Bound to the signal declaration:
later

Bound to the signal evolution
event if the signal got its value changed when entering a process
event if the signal got a transaction during the current process
last_event(simulation only) elapsed time since last event
last_value value before the last event
last_active(simulation only) elapsed time since last transaction

Usage: find a rising edge on the clock signal:

clk'event' and clk'last_value'=0 and clk=1

There are also the functions rising_edge and falling_edgefrom the 1164 package:

rising_edge(clk)
falling_edge(clk)

55 / 55


	Contents
	VHDL Introduction
	Programming in VHDL
	Structural VHDL
	Dataflow modeling
	Sequential processes
	Test-benches
	Miscalenous things

